

#### What is the change?

The CMOSF8H+ process technology running in ST Rousset (France) 8 inch fab (R8) has been also qualified in ST Singapore 8 inch fab (SG8E) for double source wafer manufacturing.

The M24128, M24C16, M24C04, M24C02 industrial grade EEPROM currently produced with CMOSF8H+ process technology in ST Rousset 8 inch Fab (R8), will be also produced with same process technology in ST Singapore 8inch fab (SG8E).

Die design remains unchanged. Electrical Wafer Sort, Assembly and Final test remain unchanged.

#### Why?

The strategy of the STMicroelectronics Memory division is to support our customers on product and service quality on a long-term basis. In line with this commitment, this Front-end manufacturing double source introduction will increase wafer manufacturing capacity and contribute to EEPROM business continuity security (BCP).

#### When?

M24128 samples are available. M24128 qualification completed.

M24C04 and M24C02 samples available from Week 27 / 2022 M24C04 and M24C02 qualification completion Week 41 / 2022

M24C16 samples available from Week 42 / 2022 M24C16 qualification completion February / 2023

First deliveries of M24128 from SG8E will start from Week 36 / 2022 Deliveries of M24C04/02/16 will start at qualification completion.

#### How will the change be qualified?

This change has been qualified using the standard STMicroelectronics Corporate Procedures for Quality and Reliability.

Process technology CMOSF8H+ is qualified with driver product M24128. Other products benefit of family approach and are qualified by similarity. Qualification Report on M24128 RERMMY2104 is available

#### What is the impact of the change?

- Form: marking change for SO8N, no change for TSSOP8 and DFN8
- Fit: no change
- Function: no change

# How can the change be seen?

# - DEVICE MARKING

SO8N

Example:

For the SO8N package, the difference is visible inside the trace code (PYWWT) where the last digit "T" for the process technology/wafer fab identifier is "D" for the additional ST Ang Mo Kio (Singapore) wafer fab, this identifier being "T" for the current ST Rousset (France) wafer fab.



P = Assembly plant / country Y = Last digit of the Year of Assembly WW = Assembly Week code T = Process technology code/ Wafer Fab ID



# - BOX LABEL MARKING

On the BOX LABEL, the difference is visible inside the **Finished Good Part Number** where the "**process technology**" identifier is "**D**" for products manufactured with CMOSF8H+ in **additional ST Ang Mo Kio (Singapore) wafer fab**, this identifier being "T" for current ST Rousset (France) wafer fab.

# Example for SO8N: M24C16-RMN6TP

| iics   | Manufactured under patents or patents pending<br>Country Of Origin: China<br>Pb-free 2 <sup>nd</sup> Level Interconnect<br>MSL: 1 NOT MOISTURE SENSITIVE |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| иc     | PBT: 260 °C Category: e4 ECOPACK2/ROHS                                                                                                                   |
| ctroni | TYPE: M24C16-RMN6TP<br>M24C16-RMN6TPDHA                                                                                                                  |
| ec     | Total Qty: 2500                                                                                                                                          |
| icroel | Process technology identifier:     - "D" for ST Ang Mo Kio (Singapore) wafer fab     - "T" for current ST Rousset (France) wafer fab                     |
| CL     | Marking 24C16RP                                                                                                                                          |
| STM    | Bulk ID       X0X00XX0000         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                   |

For space constraints on **TSSOP8** and **DFN8** packages, the difference is **only visible on box label**, inside the **Finished Good Part Number** as shown below:

| nics               | Manufactured under patents or patents pendingCountry Of Origin: ChinaPb-free2 <sup>nd</sup> Level InterconnectMSL: 1NOT MOISTURE SENSITIVE |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 5                  | PBT: 260 °C Category: e4 ECOPACK2/ROHS                                                                                                     |
| ctro               | TYPE: M24C16-RDW6TP<br>M24C16-RDW6TPDTA                                                                                                    |
| e                  | Total Qty: 4000 Process technology identifier:                                                                                             |
| oe                 | - "D" for ST Ang Mo Kio (Singapore) wafer fab<br>- "T" for current ST Rousset (France) wafer fab                                           |
| 5                  | Marking 416RT                                                                                                                              |
| STMicroelectronics | Bulk ID       X0X00XXX0000         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                    |

#### Example for TSSOP8: M24C16-RDW6TP

# Example for DFN8: M24128-BFMC6TG

| iics      | Manufactured under patents or patents pendingCountry Of Origin: PhilippinesPb-free2 <sup>nd</sup> Level InterconnectMSL: 1NOT MOISTURE SENSITIVE |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| n         | PBT: 260 °C Category: e4 ECOPACK2/ROHS                                                                                                           |
| ectroni   | TYPE: M24128-BFMC6TG                                                                                                                             |
|           | M24128BFMC6TG <u>D</u> GA                                                                                                                        |
| e         | Total Qty: 5000                                                                                                                                  |
|           | Process technology identifier:<br>- "D" for ST Ang Mo Kio (Singapore) wafer fab                                                                  |
| 0e        | Trace Codes - "T" for current ST Rousset (France) wafer fab                                                                                      |
| <u>ic</u> | Marking 4GFT                                                                                                                                     |
| STMicroel | Bulk ID       X0X00XXX0000         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                          |

# **Appendix A- Product Change Information**

| Product family / Commercial products:                                             | Industrial grade EEPROM products manufactured with<br>CMOSF8H+ - see Appendix B for product list                    |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Customer(s):                                                                      | All                                                                                                                 |
| Type of change:                                                                   | Additional wafer fab                                                                                                |
| Reason for the change:                                                            | Double source                                                                                                       |
| Description of the change:                                                        | Additional ST Ang Mo Kio (Singapore) wafer fab to current ST Rousset (France) wafer fab.                            |
| Forecast date of the change: (Notification to customer)                           | Week 23 / 2022                                                                                                      |
| Forecast date of<br><u>Qualification samples</u> availability for<br>customer(s): | As per defined in Appendix B                                                                                        |
| Qualification Report availability:                                                | The Reliability evaluation Report RERMMY2104 is<br>available and included inside this document.<br>(See Appendix C) |
| Marking to identify the changed product:                                          | Process technology / wafer fab identifier " <b>D</b> " on SO8N package.<br>No marking change on TSSOP8 & DFN8.      |
| Description of the qualification program:                                         | Standard ST Microelectronics Corporate Procedures for Quality and Reliability                                       |
| Estimated date of first shipment:                                                 | Week 36 / 2022                                                                                                      |

# Appendix B: concerned Commercial Part Numbers:

| Commercial product | Samples<br>availability |  |
|--------------------|-------------------------|--|
| M24C02-RMC6TG      | Week 33 / 2022          |  |
| M24C02-FMC6TG      | Week 33 / 2022          |  |
| M24C02-WMN6TP      | Week 27 / 2022          |  |
| M24C02-RMN6TP      | Week 27 / 2022          |  |
| M24C02-RDW6TP      | Week 27 / 2022          |  |
| M24C04-WMN6TP      | Week 27 / 2022          |  |
| M24C04-RMN6TP      | Week 27 / 2022          |  |
| M24C16-WMN6TP      | Week 42 / 2022          |  |
| M24C16-RMN6TP      | Week 42 / 2022          |  |
| M24C16-RDW6TP      | Week 42 / 2022          |  |
| M24128-BFMC6TG     | Week 29 / 2022          |  |
| M24128-BFMC6TG/T   | Week 29 / 2022          |  |
| M24128-BRMN6TP     | Available               |  |
| M24128-BWMN6TP     | Available               |  |
| M24128-BWDW6TP     | Available               |  |
| M24128-BRDW6TP     | Available               |  |

# Appendix C: Reliability Report:

See next pages





# Reliability Report RERMMY2104

# FE transfer

CMOSF8H+ technology transfer from R8 to SG8E

| General Information |                                                      |  |
|---------------------|------------------------------------------------------|--|
| Commercial Product  | M24128-BWMN6TP<br>M24128-BRMN6TP                     |  |
| Product Line        | 24281D                                               |  |
| Product Description | 128 Kbit serial I2C bus<br>EEPROM with 400 kHz clock |  |
| Package             | SO8N                                                 |  |
| Silicon Technology  | CMOSF8H+                                             |  |
| Division            | MEMORY                                               |  |

| Traceability    |                      |
|-----------------|----------------------|
| Diffusion Plant | ST Singapore SG8E 8" |
| Assembly Plant  | ST Shenzhen, China   |

| Reliability Assessment |  |
|------------------------|--|
| Pass                   |  |
| Fail                   |  |

| Release | Date         | Author     | Function                                        |
|---------|--------------|------------|-------------------------------------------------|
| Rev 01  | May 31, 2022 | Eric DENIS | Division Product Quality & Reliability Engineer |

# **DOCUMENT APPROVERS:**

| Name        | Function                 | Location   | Date         |
|-------------|--------------------------|------------|--------------|
| PAVANO Rita | Division Quality Manager | ST Rousset | May 31, 2022 |

This report is a summary of the reliability trials performed in good faith by STMicroelectronics. This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics General Terms and Conditions of Sale.

#### **RELIABILITY EVALUATION OVERVIEW**

#### • OBJECTIVE

This reliability evaluation report summarizes the results of the reliability trials that were performed, in agreement with JEDEC JESD47 International Standard, to qualify the CMOSF8H+ silicon process technology in the ST SG8E 8" diffusion fab in Singapore.

The CMOSF8H+ is a known silicon process technology in the ST Rousset 8" fab, qualified for EEPROM ICs.

The qualification of CMOSF8H+ silicon process technology in ST SG8E 8" fab use M24128 as product driver.

The strategy of the STMicroelectronics Memory division is to support our customers on product and service quality on a long-term basis. In line with this commitment, this Front-end manufacturing double source introduction will increase wafer manufacturing capacity and contribute to EEPROM business continuity security (BCP).

This document serves for the qualification of the named products using the named silicon process technology in the named diffusion fab.

The voltage and temperature ranges covered by this document are:

• 1v7 to 5v5 at -40 to 85°C

#### • CONCLUSION

All reliability tests have been completed with positive results. Neither functional nor parametric rejects were

detected at final electrical testing.

Based on the overall results obtained, the CMOSF8H+ silicon process technology in the ST SG8E 8" diffusion fab in Singapore using M24128 product and assembled in SO8 package (Assy in ST Shenzhen FAB), has positively passed reliability evaluation in agreement with JEDEC JESD47 International Standard, and all products described in front page table are qualified.

#### TABLE OF CONTENT

| 1. | REL                | LIABILITY STRATEGY                    | 12 |  |
|----|--------------------|---------------------------------------|----|--|
| 2. | PRO                | ODUCT OR TEST VEHICLE CHARACTERISTICS | 12 |  |
|    | 2.1.               | Generalities                          | 12 |  |
|    | 2.2.               | Reliability testing information       | 12 |  |
|    |                    | ST RESULTS SUMMARY                    |    |  |
| ;  | 3.1.               | Product vehicles information          | 12 |  |
|    | 3.2.               | Test plan and results summary         | 13 |  |
| 4. | APF                | PLICABLE AND REFERENCE DOCUMENTS      | 15 |  |
| 5. | GLC                | DSSARY                                | 16 |  |
| 6. | . REVISION HISTORY |                                       |    |  |

#### 1. RELIABILITY STRATEGY

This section contains a general description of the reliability evaluation strategy. The named products are qualified using the standard STMicroelectronics corporate procedures for quality and reliability.

For the new CMOSF8H+ silicon process technology in the ST SG8E 8" diffusion fab in Singapore qualification:

- Die-oriented reliability tests were run on three diffusion lots
- Package-oriented reliability tests were run on three diffusion lots

Reliability trials performed as part of this reliability evaluation are in agreement with **ST 0061692** specification

and JEDEC JESD47 International Standard.

#### 2. PRODUCT OR TEST VEHICLE CHARACTERISTICS

#### 2.1. Generalities

The M24128 device is I2C-compatible electrically erasable programmable memories (EEPROM). It is organized as  $16384 \times 8$  bits.

I2C uses a two-wire serial interface, comprising a bi-directional data line and a clock line. The devices carry a built-in 4-bit Device Type Identifier code (1010) in accordance with the I2C bus definition.

The device behaves as a slave in the I2C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW), terminated by an acknowledge bit.

When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.

For more details refer to the product datasheet.

#### 2.2. Reliability testing information

| Reliability Testing Information                |                                                           |  |
|------------------------------------------------|-----------------------------------------------------------|--|
| Reliability laboratory name / location         | Grenoble Rel Lab, RCCAL, Rousset MDG Rel Lab, TPY CPA Lab |  |
| Board Level Reliability trials (if applicable) |                                                           |  |
| Reliability laboratory name / location         | Rousset MDG Rel Lab                                       |  |

<u>Note:</u> ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: <u>http://www.st.com/content/st\_com/en/support/quality-and-reliability/certifications.html</u>

#### 3. TEST RESULTS SUMMARY

#### 3.1. Product vehicles information

| Product | Silicon<br>process<br>technology | Wafer fabrication<br>location | Package description | Assembly plant location | Lot# / Diffusion Lot /<br>Wafer ID |  |
|---------|----------------------------------|-------------------------------|---------------------|-------------------------|------------------------------------|--|
| M24128  | CMOSF8H                          | ST Singapore<br>SG8E 8"       | SO8N                | ST Shenzhen             | Lot 1 / C132XXX / 20               |  |

| M24128 | CMOSF8H | ST Singapore<br>SG8E 8" | SO8N | ST Shenzhen | Lot 2 / C134TFN / 20 |
|--------|---------|-------------------------|------|-------------|----------------------|
| M24128 | CMOSF8H | ST Singapore<br>SG8E 8" | SO8N | ST Shenzhen | Lot 3 / C144T74 / 20 |

# *3.2. Test plan and results summary* ACCELERATED LIFETIME SIMULATION TESTS

| Test<br>code | Stress method | Stress Conditions                                                                                        | Lots<br>Qty | S.S. | Total | Results/Lot<br>Fail/S.S.                     | Comments: (N/A<br>=Not Applicable) |
|--------------|---------------|----------------------------------------------------------------------------------------------------------|-------------|------|-------|----------------------------------------------|------------------------------------|
| HTOL         | JESD22-A108   | 4 000 000 E/W cycles at 25°C<br>+ HTOL at Ta = 150°C, bias 6v0<br>Duration = 1000hrs<br>⊠Testing at Room | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77 |                                    |
| LTOL         | JESD22-A108   | 4 000 000 E/W cycles at 25°C<br>+ LTOL at Ta = -40°C, bias 6v0<br>Duration = 1000hrs<br>⊠Testing at Room | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77 |                                    |
| PCHTDR       | JESD22-A117   | 4 000 000 E/W cycles at 25°C<br>+ HTSL at Ta = 150°C<br>Duration = 1000hrs<br>⊠Testing at Room           | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77 |                                    |
|              |               | 1 200 000 E/W cycles at 85°C<br>+ HTSL at Ta = 150°C<br>Duration = 1000hrs<br>⊠Testing at Room           | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77 |                                    |
| LTDR         | JESD22-A117   | 4 000 000 E/W cycles at 25 °C<br>+ HTSL at Ta = 25 °C<br>Duration = 1000hrs<br>⊠Testing at Room          | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77 |                                    |

|      | JESD22-A117 | 1 200 000 E/W cycles<br>at Ta = 85°C<br>⊠Testing at Room             | 3 | 77  | 231  | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |
|------|-------------|----------------------------------------------------------------------|---|-----|------|-------------------------------------------------|
| NVCE |             | 4 000 000 E/W cycles at<br>Ta = 25°C<br>⊠Testing at Room             | 3 | 77  | 231  | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |
|      |             | 4 000 000 E/W cycles at<br>Ta = -40°C<br>⊠Testing at Room            | 3 | 77  | 231  | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |
| ELFR | JESD22-A108 | HTOL at Ta = 150°C, bias 6v0<br>Duration = 48hrs<br>⊠Testing at Room | 3 | 800 | 2400 | Lot 1 : 0/800<br>Lot 2 : 0/800<br>Lot 3 : 0/800 |

#### ACCELERATED ENVIRONMENT STRESS TESTS

| Test<br>code | Stress<br>method | Stress Conditions                                                                            | Lots<br>Qty | S.S. | Total | Results/Lot<br>Fail/S.S.                        | Comments:(N/A =Not<br>Applicable) |
|--------------|------------------|----------------------------------------------------------------------------------------------|-------------|------|-------|-------------------------------------------------|-----------------------------------|
| PC           | J-STD-020        | 24h bake@125°C,<br>MSL1 (168h@85°C/85%RH)<br>3x Reflow simulation<br>Peak Reflow Temp= 260°C | 3           | 385  | 1155  | Lot 1 : 0/385<br>Lot 2 : 0/385<br>Lot 3 : 0/385 |                                   |
| HAST         | JESD22-A110      | Ta= 130 °C, 85% RH, bias 5v6<br>Duration= 96hrs<br>⊠After PC<br>⊠Testing at Room             | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |                                   |
| HTSL         | JESD22-A103      | Ta= 150°C<br>Duration= 1000hrs<br>⊠After PC<br>⊠Testing at Room                              | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |                                   |
| тс           | JESD22-A104      | Ta= -65 °C / 150 °C<br>Cycles= 1000<br>⊠After PC<br>⊠Testing at Room                         | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |                                   |
| THB          | JESD22-A101      | Ta= 85 °C, 85% RH, bias 5v6<br>Duration= 1000hrs<br>⊠After PC<br>⊠Testing at Room            | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |                                   |
| UHAST        | JESD22-A118      | Ta= 130 °C, 85% RH, No bias<br>Duration= 96hrs<br>⊠After PC<br>⊠Testing at Room              | 3           | 77   | 231   | Lot 1 : 0/77<br>Lot 2 : 0/77<br>Lot 3 : 0/77    |                                   |

#### **Electrical Verification Tests**

| Test<br>code | Stress method              | Stress Conditions              | Lots<br>Qty | S.S. | Total | Results/Lot<br>Fail/S.S.           | Comments:(N/A =Not<br>Applicable) |
|--------------|----------------------------|--------------------------------|-------------|------|-------|------------------------------------|-----------------------------------|
| ESD          | ANSI/ESDA/<br>JEDEC JS-002 | Ta= 25°C, target CDM = +/-500V |             | 18   | 54    | Lot 1 : > 1500V<br>Lot 2 : > 1500V | Class C3                          |
| CDM          |                            | ⊠Testing at Room               |             | 10   |       | Lot 3 : > 1500V                    | 01435 00                          |

| ESD<br>HBM | ANSI/ESDA/<br>JEDEC JS-001 | Ta= 25°C, target HBM = /- 2kV<br>⊠Testing at Room             | 3 | 60 | 180 | Lot 1: > 2000V<br>Lot 2: > 2000V<br>Lot 3: > 2000V | Class 3A         |
|------------|----------------------------|---------------------------------------------------------------|---|----|-----|----------------------------------------------------|------------------|
| LU         | JESD78                     | Ta= 150°C, current injection +/-<br>200mA<br>⊠Testing at Room | 3 | 6  | 18  | Lot 1 : 0/6<br>Lot 2 : 0/6<br>Lot 3 : 0/6          | Class II level A |

Note: Test method revision reference is the one active at the date of reliability trial execution.

### 4. APPLICABLE AND REFERENCE DOCUMENTS

| Reference   | Short description                                                                                        |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| JESD47      | Stress-Test-Driven Qualification of Integrated Circuits                                                  |  |  |  |
| SOP2.4.4    | Record Management Procedure                                                                              |  |  |  |
| SOP2.6.2    | Internal Change Management                                                                               |  |  |  |
| SOP2.6.7    | Finished Good Maturity Management                                                                        |  |  |  |
| SOP2.6.9    | Package & Process Maturity Management in BE                                                              |  |  |  |
| SOP2.6.11   | Program Management for Product Development                                                               |  |  |  |
| SOP2.6.17   | Management of Manufacturing Transfers                                                                    |  |  |  |
| SOP2.6.19   | Front-End Technology Platform Development and Qualification                                              |  |  |  |
| DMS 0061692 | 1692 Reliability Tests and Criteria for Product Qualification                                            |  |  |  |
| J-STD-020   | Moisture/Reflow Sensitivity Classification for Nonhermetic Surface Mount Devices                         |  |  |  |
| JESD22-A101 | Steady state temperature humidity bias life test                                                         |  |  |  |
| JESD22-A103 | High temperature storage life                                                                            |  |  |  |
| JESD22-A104 | Temperature cycling                                                                                      |  |  |  |
| JESD22-A108 | Temperature, bias, and operating life                                                                    |  |  |  |
| JESD22-A110 | Highly Accelerated Temperature and Humidity Stress Test                                                  |  |  |  |
| JESD22-A117 | Electrically Erasable Programmable ROM (EEPROM) Program / Erase Endurance and Data Retention Stress Test |  |  |  |
| JESD22-A118 | Accelerated Moisture Resistance - Unbiased HAST                                                          |  |  |  |
| JS-001      | Human Body Model (HBM)                                                                                   |  |  |  |
| JS-002      | Charged Device Model (CDM)                                                                               |  |  |  |
| JESD78      | Latch-Up                                                                                                 |  |  |  |

#### 5. GLOSSARY

| CDM    | Electrostatic Discharge – Charged Device Model                     |
|--------|--------------------------------------------------------------------|
| ELFR   | Early Life Failure Rate                                            |
| HAST   | Highly Accelerated Stress Test                                     |
| HBM    | Electrostatic Discharge - Human Body Model                         |
| HTOL   | High Temperature Operating Life                                    |
| HTSL   | High Temperature Storage Life                                      |
| LTDR   | Nonvolatile Memory Low Temperature Data Retention and Read Disturb |
| LTOL   | Low Temperature Operating Life                                     |
| LU     | Latch-Up                                                           |
| NVCE   | Nonvolatile Memory Cycling Endurance                               |
| PC     | Preconditioning                                                    |
| PCHTDR | Nonvolatile Memory Post-Cycling High Temperature Data Retention    |
| ТС     | Temperature Cycling                                                |
| THB    | Temperature Humidity Bias                                          |
| UHAST  | Unbiased Highly Accelerated Stress Test                            |

#### 6. REVISION HISTORY

| Release | Date                        | Description     |
|---------|-----------------------------|-----------------|
| Rev 01  | May 31 <sup>st</sup> , 2022 | Initial release |

#### **TERMS OF USE**

#### BY ACCEPTING THIS REPORT, YOU AGREE TO THE FOLLOWING TERMS OF USE:

This Reliability Report (the "Report") and all information contained herein is the property of STMicroelectronics ("ST") and is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this Report solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this Report may not be used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this Report shall not be construed as an admission, acknowledgement or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not promise that this Report is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental, punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this Report. You further acknowledge and agree that the use of this Report in violation of these Terms of Use would cause immediate and irreparable harm to ST which could not adequately be remedied by damages. You therefore agree that injunctive relief is an appropriate remedy to enforce these Terms of Use.

Disclosure of this document to any non-authorized party must be previously authorized by ST only under the provision of a proper confidentiality contractual arrangement executed between ST and you and must be treated as strictly confidential.

At all times you will comply with the following rules:

- Do not copy or reproduce all or part of this document
- Keep this document locked away
- Further copies can be provided on a "need to know basis", Please contact your local ST Sales Office or document writer

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement, including, without limitation, the warranty provisions thereunder.

In that respect please note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is granted by ST herein.

ST and ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously contained in any prior version of this document.

©2022 STMicroelectronics - All rights reserved

| Document Revision History |                             |                                       |  |  |  |
|---------------------------|-----------------------------|---------------------------------------|--|--|--|
| Date                      | Description of the Revision |                                       |  |  |  |
| Apr. 04, 2022             | 1.00                        | Christian POLI - First draft creation |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |
|                           |                             |                                       |  |  |  |

| Source Documents & Reference Documents |       |       |  |  |
|----------------------------------------|-------|-------|--|--|
| Source document Title                  | Rev.: | Date: |  |  |
|                                        |       |       |  |  |
|                                        |       |       |  |  |
|                                        |       |       |  |  |